Processing math: 100%

AXIOMENSYSTEME DER AUSSAGENLOGIK


 

G. Frege

Entnommen aus: Begriffsschrift (1879); siehe auch Begriffsschrift und andere Aufsätze (2014)

 

Axiome:

  1. a(ba)
  2. [c(ba)][(cb)(ca)]
  3. [c(ba)][b(ca)]
  4. (ba)(¬a¬b)
  5. ¬¬aa
  6. a¬¬a

B. Russell, A.N. Whitehead

Entnommen aus: Principia mathematica 1 (1910)

 

Axiome:

  1. aaa
  2. bab
  3. abba
  4. a(bc)b(ac)
  5. (bc)(abac)

S. Hilbert

Entnommen aus: Die logischen Grundlagen der Mathematik (1922)

 

Axiome:

  1. a(ba)
  2. [a(ab)](ab)
  3. [a(bc)][b(ac)]
  4. (bc)[(ab)(ac)]
  5. a(¬ab)
  6. (ab)[(¬ab)b]

Schlussregel:

  1. Modus Ponens

W. Ackermann, D. Hilbert

Entnommen aus: Grundzüge der theoretischen Logik (1928)

 

Axiome:

  1. aaa
  2. aab
  3. abba
  4. (ab)(cacb)

Schlussregel:

  1. Einsetzungsregel
  2. Modus Ponens

J. Lukasiewicz, A. Tarski

Entnommen aus: Untersuchungen über den Aussagenkalkül (1930); siehe auch J. Lukasiewicz: Elements of mathematical logic (1963)

 

Axiome:

  1. (ab)[(bc)(ac)]
  2. (¬aa)a
  3. a(¬ab)

J. Lukasiewicz

1. Alternative, entnommen aus: Elements of mathematical logic (1963)

 

Axiome:

  1. (ab)(bc)(ac)
  2. (¬aa)a
  3. a(¬ab)

Schlussregel:

  1. Modus Ponens

J. Lukasiewicz

2. Alternative, entnommen aus: Elements of mathematical logic (1963)

 

Axiome:

  1. (ab)[(bc)(ac)]
  2. (¬ab)[(ba)a]
  3. a(¬ab)

Schlussregel:

  1. Modus Ponens

J. Lukasiewicz

Entnommen aus: Elements of mathematical logic (1963)

 

Axiome:

  1. [(ab)c](bc)
  2. [(ab)c](¬aa)
  3. (¬ac){(bc)[(ab)c]}

Schlussregel:

  1. Modus Ponens

J. Lukasiewicz, A. Tarski

Entnommen aus: Untersuchungen über den Aussagenkalkül (1930)

 

Axiom:

  1. ((a(ba))(((¬c(d¬e))((c(df))((ed)(ef))))g))(hg)

P. Bernays, D. Hilbert

Entnommen aus: Grundlagen der Mathematik I (1934)

 

Axiome:

  1. a(ba)
  2. [a(ab)](ab)
  3. (ab)[(bc)(ac)]
  4. aba
  5. abb
  6. (ab)[(ac)(abc)]
  7. aab
  8. bab
  9. (ac)[(bc)(abc)]
  10. (ab)(ab)
  11. (ab)(ba)
  12. (ab)[(ba)(ab)]
  13. (ab)(¬b¬a)
  14. a¬¬a
  15. ¬¬aa

J.B. Rosser

Entnommen aus: Logic for mathematicians (1953)

 

Axiome:

  1. a(aa)
  2. (ab)a
  3. (ab)[¬(bc)¬(ca)]

Schlussregel:

  1. Modus Ponens

W. Ackermann, D. Hilbert

Entnommen aus: Grundzüge der theoretischen Logik (1959)

 

Axiome:

  1. alle Formeln
    • die aus einer Disjunktion a1an bestehen, worin die ai Aussagenvariablen oder negierte Aussagenvariablen sind
    • eine gewisse Aussagenvariable tritt einmal negiert und einmal unnegiert auf

Schlussregel:

  1. abca¬¬bc
  2. a¬cb,a¬dba¬(cd)b

S.C. Kleene

Entnommen aus: Mathematical logic (1967); siehe auch Mathematical logic (2013);

 

Axiome:

  1. a(ba)
  2. (ab){[a(bc)](ac)}
  3. a(bab)
  4. aba
  5. abb
  6. aab
  7. bab
  8. (ac)[(bc)(abc)]
  9. (ab)[(a¬b)¬a]
  10. ¬¬aa
  11. (ab)[(ba)(ab)]
  12. (ab)(ab)
  13. (ab)(ba)

Schlussregel:

  1. Modus Ponens

J.R. Shoenfield

Entnommen aus: Mathematical logic (1967); siehe auch R.E. Hodel: An introduction ... (2013)

 

Axiom:

 

  1. ¬aa Satz des ausgeschlossenen Dritten

 

Schlussregeln:

 

  1. a(bc)(ab)c Assoziativregel (Ass)
  2. aaa Kompressionsregel (Kom)
  3. aba Expansionsregel (Exp)
  4. ab, ¬acbc Schnittregel (Cut)

S. Tanaka

Entnommen aus: On axiom systems of propositional logic XXV (1967)

 

Axiome:

  1. (ab)[(bc)(ac)]
  2. [(ab)a]a
  3. a[(ab)b]

E. Mendelson

Entnommen aus: Introduction to mathematical logic (4. Auflage, 1997)

 

Axiome:

  1. a(ba)
  2. a(bc)[(ab)(ac)]
  3. (¬b¬a)[(¬ba)b]

Schlussregel:

  1. Modus Ponens