EPITROCHOIDS


 

Radius of the inner circle: 2.5

Radius of the rolling circle: 2.5

Point distance to rolling centre: 2.5

 

Radius of the inner circle: 4.0

Radius of the rolling circle: 2.0

Point distance to the rolling centre: 2.0

Radius of the inner circle: 5.0

Radius of the rolling circle: 1.66

Point distance to the rolling centre: 1.66

Radius of the inner circle: 4.0

Radius of the rolling circle: 1.5

Point distance to the rolling centre: 1.5

Radius of the inner circle: 5.0

Radius of the rolling circle: 1.66

Point distance to the rolling centre: 1.2

Epitrochoid

Epitrochoid (point at distance \( d \) on a circle of radius \( r \) rolling outside a fixed circle of radius \( R \))

$$ x(\theta) = (R+r)\cos(\theta) - d\cos\!\left(\frac{R+r}{r}\,\theta\right),\qquad y(\theta) = (R+r)\sin(\theta) - d\sin\!\left(\frac{R+r}{r}\,\theta\right). $$

Special case (epicycloid, \( d=r \))

$$ x(\theta) = (R+r)\cos(\theta) - r\cos\!\left(\frac{R+r}{r}\,\theta\right),\qquad y(\theta) = (R+r)\sin(\theta) - r\sin\!\left(\frac{R+r}{r}\,\theta\right). $$
  • Mouse wheel: zoom

Created by Yannick Häberlin with WebGL (part of his Bachelor thesis)